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We study the nucleation and growth of flame fronts in slow combustion. This
is modeled by a set of reaction-diffusion equations for the temperature field,
coupled to a background of reactants and augmented by a term describing ran-
dom temperature fluctuations for ignition. We establish connections between
this model and the classical theories of nucleation and growth of droplets from
a metastable phase. Our results are in good agreement with theoretical predictions.

I. INTRODUCTION

The kinetic process by which first-order phase transitions take place is an
important subject of longstanding experimental and theoretical interest.(1)

Nucleation is the most common of first-order transitions, and remains
of a great deal of interest.(2-5) There are two fundamentally different cases,
homogeneous and heterogeneous nucleation. Homogeneous nucleation is
an intrinsic process where embryos of a stable phase emerge from a matrix
of a metastable parent phase due to spontaneous thermodynamic fluctua-
tions. Droplets larger than a critical size will grow while smaller ones decay
back to the metastable phase.(6) More commonplace in nature is the process
of heterogeneous nucleation. There, impurities or inhomogeneities catalyze
a transition by making growth energetically favorable.
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Here we show that the concepts of nucleation and growth can be use-
fully applied to understand some aspects of slow combustion. We use a
phase-field model of two coupled reaction-diffusion equations to study the
nucleation and growth of combustion centers in two-dimensional systems.
Such continuum reaction-diffusion equations have been used extensively in
physics, chemistry, biology and engineering to describe a wide range of
phenomena from pattern formation to combustion. However, the connec-
tion of reaction-diffusion equations to nucleation and interface growth has
received little attention.

In a recent study of slow combustion in disordered media, Provatas
et al.(7,8) showed that flame fronts exhibit a percolation transition, consistent
with mean field theory, and that the kinetic roughening of the reaction
front is consistent with the Kardar-Parisi-Zhang (KPZ)(9) universality
class. A very recent experimental study(10) of slow combustion of paper
indeed demonstrates that the roughening exponents obtained are compatible
with the KPZ equation. In this paper we make a further connection between
slow combustion started by spontaneous fluctuations, and the classical
theory of the nucleation(6) and growth of droplets from a metastable phase.

II. THE MODEL

We generalize the model of Provatas et al. by including an uncorrelated
Gaussian noise source n(x, t), as a function of position x and time t, i.e.,
<n(x, t ) > = 0 and < n ( x , t) n (x ' , t ' ) ) =2eS(x-x') d(t-t'), where the
angular brackets denote an average, and e is the intensity of the noise. The
model then consists of equations of motion for the temperature field T(x, t)
and the local concentration if reactants C(x, t). The temperature satisfies
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The first term on the right-hand-side accounts for thermal diffusion, with
diffusion constant D, the second term gives Newtonian cooling due to
coupling with a heat bath of background temperature T0, with rate con-
stant F, and the third term R(T, C) is the exothermic reaction rate as a
function of temperature and concentration of reactants. The concentration
satisfies dC(x, t)/dt= — 2 1 R ( T , C), and the reaction rate obeys

where 11,2 are constants, A is the Arrhenius energy barrier, and
Boltzmann's constant has been set to unity. Note that while the dynamics



of the process is controlled by the activation term e A/T, the scale for
energy is set by T3/2. We choose the same values for the constants as those
used in ref. 8, which are approximately those for the combustion of wood
in air: In physical units D = 1 m2s-1, r = 0.05 s-1, T0 = 0.1 K, A = 500 K,
and the specific heat of wood, cp = 5 Jg-1 K-1 (entering through A2 = 8).
Length is measured in units of the reactant size, and time in units of those
for the reaction to take place, A2/A1. The low background temperature is
chosen to permit good numerical accuracy for systems of moderate size,
i.e., low T0 ensures that diffusion fields remain short ranged as compared
to the lattice size. The parameter s was varied in the range 2 x l 0 - 7 —
l l x l 0 - 7 : £ = 2 x l 0 - 7 corresponds to slow, £ = 5 x 1 0 - 7 to medium, and
£ = l l x l 0 - 7 to fast nucleation rate. Physically, e cannot be related to
temperature but it should be understood as the intensity of all external
sources of noise.

We integrate these equations using Euler difference rules in space and
time, with the smallest length Ax=1, and time At = 0.01. Reactant units
are randomly dispersed across the grid points with a probability c so that
C(x, t) = 0 for an unoccupied site and C(x, t) = 1 for an occupied site, and
evidently 0 < c < l . Figure 1 shows typical results for a two-dimensional
system of size 256 x 256, with periodic boundary conditions. The morphol-
ogy of burnt and unburnt zones in these figures is strikingly similar to that
for the nucleation and growth of crystallites from a supercooled melt , ( 1 )

Fig. 1. A snapshot of the process with medium nucleation rate, where E = 4.9x 10-7. Gray
scale images temperature, where black is the hottest region, a) A system with uniform back-
ground (c = 1) at time I = 16 and b) a disordered system with c = 0.5 (which is still well above
the percolation threshold c* ~ 0.2 for e = 0) at time ( = 20. With quenched disorder (c = 0.5)
domains burn at significantly lower temperature, and with more ragged boundaries, due to
the lower concentration of reactants.
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which is the motivation for our approach. We now briefly review the classical
theories of nucleation and growth for such systems where a conservation,
law does not control the growth process.

III. THEORETICAL BACKGROUND

A. Classical Theory of Nucleation

The classical theory of nucleation(6) has two main results: A descrip-
tion of the critical droplet, and a rate equation for the growth of clusters.
The extra free energy due to a droplet of stable phase, in a metastable
background, is AF= — V Af + Aa, where V is the volume of the droplet,
A is its area, r is surface tension, and Af is the difference in the bulk free
energy densities between the metastable and stable phases. The critical
radius p* of a droplet is obtained from through minimization: d AF/dp* = 0.
In two dimensions, this gives p* = o/Af. For the metastable phase to decay,
droplets with p>p* nucleate and grow; droplets smaller than the critical
radius shrink and disappear. The rate-limiting process is the critical
droplet, with energy barrier AF(p*), whose probability of occurrence is
proportional to exp[ -AF(p*)/T].

B. Kolmogorov-Avrami-Mehl-Johnson Theory

After nucleation has occurred, the subsequent growth of droplets is
often well described by the phenomenological Kolmogorov-Avrami-Mehl-
Johnson (KAMJ) (11-13) model. This treatment describes many solid-solid
and liquid-solid transformations, provided long-range interactions between
droplets (which can be due to elastic effects, or diffusion fields) are of negli-
gible importance. The KAMJ theory assumes that nucleation is a non-
correlated random process with isotropic droplet growth occurring at
constant velocity, where the critical radius is infinitesimal, and growth
ceases when growing droplets impinge upon each other. As its basic result,
the KAMJ description gives a functional form for the volume fraction of
the transformed material:
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for homogeneous (spontaneous) nucleation, and



for heterogeneous (impurity induced) nucleation. In the above, v is the
growth velocity, / is the nucleation rate and a is the density of embryos
with p>p* present in the beginning of the process. Homogeneous and
heterogeneous-nucleation are conveniently distinguished by the Avrami
exponent, which are d + 1, and d, respectively. The waiting time accounts
for initial transients.

In the KAMJ description there are two intrinsic length scales present
in the system. The first one is the critical radius and the other is found by
simple dimensional analysis. As seen from Eqs. (3) and (4), the process is
characterized by two variables: the nucleation rate and the growth velocity.
Using them, the characteristic length for homogeneous nucleation, Eq. (3),
can be written as £ = ( v / I ) 1 / ( d + 1 ) and the characteristic time scale as r =
( I v d ) - 1 / ( d + 1 ) . In practice, it is convenient to scale the time by the half-time
of the transformation, t1/2, since it is an easily accessible quantity both
experimentally and computationally, and it can be used as a measure.(2)

In the limit where £» p* there is only one length scale present.(15) During
nucleation and growth this is the case up to the point when a connected
cluster spans the system. As a consequence of this, scaling of X ( t ) is expected,
as we will show below. In the case of heterogeneous nucleation, Eq. (4),
nucleation enters as an initial condition, thus being time independent. The
system size is the only relevant length scale defining the characteristic time
scale together with the velocity. Again, t1/2 provides a convenient measure.

The apparent simplicity of the KAMJ description is due to the fact
that it incorporates no correlations. For cases where such correlations are
minimal (as for the case considered herein), it has been quite successful in
describing experimental data,(2,3) and theoretical generalizations can be
readily made.(5,14,15) The KAMJ description can be used in calculations of
kinetic parameters and activation energies, and it provides information
about the nature of the phase transition, i.e., if the process is diffusion or
reaction (interface) controlled and if the process is influenced by inhomo-
geneities. Unfortunately, the basic KAMJ theory provides no information
about the structural changes occurring during the phase transformation.
Based on the same assumptions, Sekimoto(16) derived exact analytical
expressions for two-phase correlation functions when £»p*. Fourier
transforming Sekimoto's result for the two-point equal-time correlation
function gives the structure factor:
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where C I ( x , t ) is the one-point correlation function equal to the KAMJ
expression for transformed volume given in Eqs. (3) and (4). The two-point



for y < 1, and V(y) = 0 for y > 1. The variable y; is the normalized distance
between two points. Substituting these into Eq. (5) gives

where J0 is the Bessel function of the zeroth kind, A = 2na2e -(2/3)t°2t'3, and
a = 2vt' with t' = t — t0.

C. Nucleation of Flame Fronts

We expect these theories to give a reasonable description of the
growth of the flame fronts. In fact the agreement is much more impressive
than we had anticipated. Of course, for combustion, the picture of nuclea-
tion and growth must be modified or re-interpreted in straightforward
ways. For example, no shrinking of droplets, which herein correspond to
burned patches, is possible. Also, instead of temperature in the Boltzmann
probability weight, a quantity proportional to the intensity of noise sources
e must appear. Furthermore, the surface tension, evident in the fact that the
burned patches are round, must have its origin in the dynamical description.
Indeed, in the absence of nucleation it has been shown in refs. 7 and 8 that
the flame front roughens according to the KPZ interface equation.(17)

For example, the critical radius, corresponding to the unstable station-
ary solution of the equation of motion for a droplet, can be found as
follows. We follow refs. 4 and 17, and write the dynamical equation in
circular coordinates as

where u is a linear combination of an effective noise due to the random
reactant, and the additive noise r. In the limit of a flat front Eq. (7)
corresponds to the KPZ equation. As explicitly shown in ref. 8, the equa-
tion of motion for the flame front can be mapped onto the KPZ equation.
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correlation function C2 is C2(x, t; x + r, t) = C 2(x , t) exp[Iv2f(y)], where



The constants A, 1 and a depend functionally on the temperature Tm(x)
that solves Eqs. (1) and (2) in the mean field limit. Their precise forms,
which are not needed for our present purposes, are given in ref. 8: Physi-
cally, the constant A is proportional to the heat loss in the mean field limit,
k is proportional to the heat produced at the interface in the mean field
limit, and a is analogous to surface tension. To find an expression for the
critical radius, we Fourier expand(4) p and u as p (0 , t) = £n pn(t) ein°, and
u(o, t) = En u(t)ein0. Substituting them into Eq. (7) together with the
velocity, Eq. (8), gives p* = Da/(FA — Ac) for the the lowest order estimate
for.the critical radius of a radial flame front. Simple dimensional analysis
leads to the same result. When FA ->Xc, v -> 0, i.e., the heat lost to thermal
dissipation exactly balances that due to thermal reaction, and the critical
radius goes to infinity. Unfortunately, the numerical window in which the
critical radius changes appreciably is narrow, and close to c*. Hence,
although our numerical work reported below is consistent with the above
analysis, it does not permit a quantitative test of our estimate of p*.
Finally, we would like to point out that for this analysis to be valid, the
critical radius must be larger than the typical width of the front in order
to satisfy the sharp interface approximation.

IV. NUMERICAL RESULTS

In our simulations we have typically used lattices of size 256 x 256
with periodic boundary conditions, averaging over 1000 sets of initial
conditions. Heterogeneous nucleation is modeled via initial fluctuations at
t = 0, and homogeneous nucleation as time dependent Gaussian fluctua-
tions through n. First, we compare our results for the fraction of burnt
reactant product X(t) to the KAMJ theory. We have simulated systems
with various noise intensities with uniform (c= 1) and disordered (c = 0.3)
reactant concentrations to see the applicability of the KAMJ theory in rela-
tion to this model. In both uniform and disordered cases the simulations
are in excellent agreement with the theory as seen in Fig. 2. The case of
homogeneous nucleation fits the Avrami exponent 3, while the hetero-
geneous case gives 2, as expected. In the scaled plots we have discarded the
waiting time t0 (Eqs. (3) and (4)) since it is due to lattice effects and the
fairly small system size, and therefore does not represent a true physical
time scale.
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To find the critical radius we need the velocity of the flame front. Using the
flat front mapping,(8) the velocity of the front is given as
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Next, we will focus on the structure factor in the case of uniform
homogeneous nucleation. Here, S(k, t) corresponds to correlations in reac-
tant concentrations, i.e., between burnt zones. In the cases of both high and
low noise, we find a quantitative agreement between the theory and simula-
tions at late times, as seen Fig. 3. In order to use the theoretical prediction,
Eq. (6), we measured the growth velocity of the radius of individual nuclea-
tion centers for various concentrations, and found it to be in agreement
with previous results,(7,8) i.e., R(t)~t.

As seen from Fig. 3, the theoretical prediction underestimates the rate
of phase transformation during the early stages, but is in good agreement
at later times. This is because, for early times, contributions to the structure
factor from the bulk interior of droplets, and from the diffuse surface width
of droplets are comparable. For later times, the surface contributions (not
considered in the KAMJ and Sekimoto theories) are negligible.

For a uniform background there are very pronounced wiggles present,
as can be seen from Fig. 3b. Their origin can be traced to the presence of
the Bessel function in Eq. (6). The oscillations are due to the spherical
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Fig. 2. Fraction burned. t/t1/2 for various nucleation rates in homogeneous and hetero-
geneous nucleation in uniform and disordered systems. The inset shows the same data sets
without scaling by tl/2. The data is indistinguishable from the KAMJ theory (solid lines).
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shape of the burnt zones at early stages of the process when the growing
regions have not yet merged with each other. The absence of wiggles in the
case of quenched disorder, Fig. 3b, is simply due to the fact that the dis-
order affects the spreading of the temperature field resulting in kinetic
roughening. This is also clearly visible in Fig. 1. In Figs. 3a and 3b we have
also compared the numerical results to Porod's law, S(k, t) ~ 1 / k d + l at
large k.(1) This should describe a locally flat and thin interface, and indeed
we find excellent agreement for large k.

To confirm that the origin of the discrepancies between the theory and
our simulations of the structure factor are due to the interface width, we
also compared the results from the combustion model to a two-dimen-
sional cellular automaton model with a nearest neighbor updating rule,
using lattices of size 256 x 256 and 1024 x 1024. In order to mimic the
KAMJ theory as closely as possible, we defined the CA model as follows:
(1) no disorder in the front region, i.e., the simulations were done with a
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Fig. 3. (a) The structure factor vs. k for various time steps at a low noise intensity (see
Fig. 2) for a uniform system (c = 1), (b) The structure factor vs. k with a medium noise inten-
sity (see Fig. 2) for a disordered system (c = 0.3). The symbols represent the data from the
simulations and the lines display the theoretical prediction obtained by integrating Eq. (6).
The inset ( c = l ) shows the structure factor vs. time at fixed k; circles, k = 0.1225, and
triangles, k = 0.1975. The long-dashed line shows Porod's law, which describes large-k correla-
tions of randomly-oriented interfaces of negligible width.



uniform background (c = 1), (2) updates were done using strictly nearest
neighbor interactions for linear growth, i.e., during a single update the
"fire" (reaction front) will spread only to the "unburned" (susceptible)
nearest neighbors, and the burning site itself will turn into "ashes" (inert).
Simulation were done with both homogeneous and heterogeneous nuclea-
tion. The CA model matched exactly the KAMJ result for the volume
fraction, (Eq. (3)) and Sekimoto's result for the structure factor (Eq. (6)),
as expected.

The constant growth velocity, and the scaling of X(t) might suggest
that the structure factor exhibits scaling, with the characteristic length
increasing linearly in time, L(t) ~ t. However, as is evident from Figs. 3a
and 3b, this turns out not to be the case. This can also be seen from
Eq. (6). At early times the structure factor follows approximately ~ t5, and
for late times it falls off exponentially. The reason is that the KAMJ theory
applies to uncorrelated systems. The constant-velocity growth of a single
domain is essentially due to the constant driving force of an excess chemi-
cal potential. But the distribution in sizes and in space of the droplets is
due to their time and position of nucleation, implied by the nucleation rate.
These two time scales are not proportional to each other, so no scaling
results.

V. SUMMARY

To conclude, we have studied the connection between the classical
theory of nucleation and growth, and a model of slow combustion. We find
that the reaction occurs with constant disorder dependent velocity with a
linear scaling for the characteristic length L(t) for the individual growing
clusters. We have studied the structure factor of the temperature field and
found good agreement with the theoretical predictions.(16) These results
could be tested in a two-dimensional reaction-diffusion cell, or simply by
slowly burning uncorrelated paper, i.e., with insignificant convection.
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